Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 933750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36457501

RESUMEN

Zinc oxide nanomaterial is a potential material in the field of cancer therapy. In this study, zinc oxide nanospheres (ZnO-NS) were synthesized by Sol-gel method using yeast extract as a non-toxic bio-template and investigated their physicochemical properties through various techniques such as FTIR, XR, DLS, and TEM. Furthermore, free zinc ions released from the zinc oxide nanosphere suspended medium were evaluated by using the ICP-AS technique. Therefore, the cytotoxicity of ZnO nanospheres and released Zn ions on both HuH7 and Vero cells was studied using the MTT assay. The data demonstrated that the effectiveness of ZnO nanospheres on HuH7 was better than free Zn ions. Similarly, ZnO-Ns were significantly more toxic to HuH7 cell lines than Vero cells in a concentration-dependent manner. The cell cycle of ZnO-Ns against Huh7 and Vero cell lines was arrested at G2/M. Also, the apoptosis assay using Annexin-V/PI showed that apoptosis of HuH7 and Vero cell lines by ZnO nanospheres was concentration and time-dependent. Caspase 3 assay results showed that the apoptosis mechanism may be intrinsic and extrinsic pathways. The mechanism of apoptosis was determined by applying the RT-PCR technique. The results revealed significantly up-regulated Bax, P53, and Cytochrome C, while the Bcl2 results displayed significant down-regulation and the western blot data confirmed the RT-PCR data. There is oxidative stress of the ZnO nanospheres and free Zn+2 ions. Results indicated that the ZnO nanospheres and free Zn+2 ions induced oxidative stress through increasing reactive oxygen species (ROS) and lipid peroxidation. The morphology of the HuH7 cell line after exposure to ZnO nanospheres at different time intervals revealed the presence of the chromatin condensation of the nuclear periphery fragmentation. Interestingly, the appearance of canonical ultrastructure features of apoptotic morphology of Huh7, Furthermore, many vacuoles existed in the cytoplasm, the majority of which were lipid droplets, which were like foamy cells. Also, there are vesicles intact with membranes that are recognized as swollen mitochondria.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35535159

RESUMEN

Perception of hub genes engaged in metastatic gastric cancer (mGC) promotes novel ways to diagnose and treat the illness. The goal of this investigation is to recognize the hub genes and reveal its molecular mechanism. In order to explore the potential facts for gastric cancer, the expression profiles of two different datasets were used (GSE161533 and GSE54129). The genes were confirmed to be part of the PPI network for gastric cancer pathogenesis and prognosis. In Cytoscape, the CytoHubba module was used to discover the hub genes. Responsible hub genes were identified. Data from Kaplan-Meier plotter confirmed the predictive value of these distinct genes in various stages of gastric malignancy. Upregulated and downregulated genes were identified to utilize for further analysis. Positive regulation by a host of viral process, positive regulation of granulocyte differentiation, negative regulation of histone H3-K9 methylation were found in DEGs analysis. In addition, five KEGG pathways were identified as an essential enhancer that include nucleotide excision repair; base excision repair; DNA replication; homologous recombination; and complement and coagulation cascades. POLE, BUB1B, POLD4, C3, BLM, CCT7, PRPF31, APEX1, PSMA7, and CDC45 were chosen as hub genes after combining the PPI results. Our study recommends that BUB1B, CCT7, APEX1, PSMA7, and CDC45 might be potential biomarkers for gastric cancer. These biomarkers are upregulated genes. Therefore, suppression of these genes will increase the survival rate in gastric cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...